Footnotes are indicated by the letter “n” following the page number (for example, 99n148)

A
- accident liability limits, 29
- “acts of God,” 98
- Adams, Fred, 166–67
- adaptation, 10–11, 159–60
- Adelman, M. A., 84, 98
- advanced technology zero emission vehicles (AT-ZEVs), 53
- aerosols, 156
- affluence, 20, 177, 190–91
- Africa, 126, 158
- air pollution, 120–21, 122, 124, 144
- alarmism, 175–78
- Alaska, 158, 180
- Alberta, 90
- Albuquerque, 56
- alkaline fuel cells, 44
- Altamont Pass (California), wind farm, 33, 35, 140
- alternative fuels, 55–61
- alternative-fuel vehicles (AFVs), 56
- Anaconda, 82
- animal domestication, 11, 12
- animal power, 48–49
- Antarctica, 153
- anthracite, 22. See also coal
- Arab Oil Embargo, 96–97, 99
- ARCO, 82
- Argentina, 189
- Aristotle, 131
- Arizona, 56
- Asia, 127–28, 168
- Asimov, Isaac, 64
- asteroids, 166–67
- Athabasca oil sands, 90
- atomic energy, 9, 25–29, 161
- Atomic Energy Commission (AEC), 29
- automobiles
 - alternative fuels, 55–61
 - electric, 51–54
 - emission standards, 123
 - hybrid, 54–55
 - avian mortality (bird kills), 35, 139–40
- Babbage, Charles, 119
- background radiation, 10
- Bangkok, 125
- Bastiat, Frederic, 110
- Beijing, 125
- Belgium, 127
- biases, built-in, 168–69
- Big Bang, 7–8, 10, 65
- biomass, 40–42, 140, 162, 187–89
- birds and wind power (see avian mortality)
- bitumen, 90
- bituminous coal, 21–22. See also coal
- blackouts
 - August 2003, 112–14
 - Black Tuesday (1965), 112, 113
- Bleak House Effect, 195
- boutique gasoline, 104–106
- braking, hybrids, 55
- brine, 36
- British Petroleum (BP), 77
- British Thermal Unit (BTU)
 - definition of, 4
 - orders of magnitude, 5
- Brown, Stephen, 85
- Brundtland Commission Report, 129
- Buchanan, James, 134
- Butterfly Effect, 219–21

C
- California
 - blackouts, 3, 100–101
 - energy crisis, 98–104, 133, 194
 - green energy, 139
 - Optional Binding Mandatory Curtailment Program, 102
 - water well contamination, 129
 - wind power, 33–34
- California Air Resources Board (CARB), 52–54
- California Energy Commission (CEC), 59, 100
- California Public Utilities Commission (CPUC), 99n148, 101, 102
- calories, 6
- Canada, 90, 180
- capacity utilization factor, 26
- cap-and-trade programs, 138–39, 162–63
- capital, 71n92, 78
- capitalism, 77
- capture, rule of, 73, 73n95, 131
- carbon-based energy/fuels, xiv, 182, 186, 191
- carbon dioxide
 - from burning coal, 24
 - as byproduct, 161
 - emissions, 117, 117n, 191–92
 - as greenhouse gas, 144–46
 - positive effects, 117, 146, 147
removing from atmosphere, 165–66

trees to offset emissions, 162
carbon fertilization 146–47, 155–56
carbon monoxide, 24, 117n
carbon sequestration, 145, 164
carbon sinks, 162
carbon tax, 164
carcinogens, 137
cars. See automobiles
Carter, Jimmy, 136, 170n270
catalytic converters, 149
central power stations, 37
CFCs (chlorofluorocarbons), 149–50
chain reaction, 26
chaos theory, 219–21
charts
conversion factors, 225
heat contents, 226
numeric prefixes, 226
chemical energy, 10
Chernobyl nuclear plant accident, 27
Chevron, 77
ChevronTexaco, 77
Chicago, 85
China, People’s Republic of, 104, 127, 168, 168n
chlorofluorocarbons (CFCs), 149–50
circulation, of air, 8
Clean Air Act Amendments of 1977, 132, 134
Clean Air Act Amendments of 1990, 22
Clean Air Act of 1970, 149
Clean Water Act of 1972, 124
climate change (See also global warming)
computer modeling, 155–57
correction, 159–60
economic effects, 159
extreme events, 153
future, 192
optimism toward, 158, 160, 192
pessimism toward, xiii, 143, 157
policy proposals, 170–72
prevention, 159–60
role of humans, 154–55
solutions, 159–67
Club of Rome, 81
CO₂, See carbon dioxide
Coal Question, The (Jevons), v, 70–71, 81
coal
combustion, 23–24
England, 70–71
environmental effects, 22–24
extraction, 22–23
formation, 9
prices, 29
probable resources, 87
proved reserves, 89
strip mining, 22, 23, 167
sulfur dioxide emissions, 132–33
supply estimate, 87
transportation of, 23
waste disposal, 24
clean coal ash, 163
clean-coal power plants, 21–25, 160–61
clean gas, 120
cofiring, 42
cogeneration facilities, 161
combined-cycle gas plants, 29, 30
command-and-control approach to regulations, 131–36
Compressed Natural Gas (CNG), 55–56
computer modeling, of climate change, 155–57
concentrated benefits and diffuse costs problem, 135
concession agreements, 74
cosmic radiation, 10
depletionists, 92, 94
developing countries. See Third World
diesel engines, 168
Direct Methanol Fuel Cells, 44
distributed generation, 37–38
downstream sectors, 75
Drake, Edwin, 73
Duell, Charles, 178
DuPont, 93
economic efficiency, 63–79
definition of, 65
as double-edged sword, 159n
economic, 70
economic isolation, 194
economics, 67, 78–79
economies of scale, 37, 77
economies of scope, 77
Edison, Thomas, 37, 57
Earth’s orbit, altering, 166–67
Earth Summit (Rio de Janeiro), 129
electric power
building and, 161
california power crisis and, 102–3
demand, 92, 180
prices and, 79, 91, 180
private property and, 130–31, 187, 189
resources and, 69–70, 86–87
(See also efficiency)
cofiring, 42
cogeneration facilities, 161
combined-cycle gas plants, 29, 30
command-and-control approach to regulations, 131–36
Compressed Natural Gas (CNG), 55–56
computer modeling, of climate change, 155–57
concentrated benefits and diffuse costs problem, 135
concession agreements, 74
conservation
buildings and, 161
california power crisis and, 102–3
demand, 92, 180
prices and, 79, 91, 180
private property and, 130–31, 187, 189
resources and, 69–70, 86–87
(See also efficiency)
conversion factors chart, 225
deeded power and, 160–61
demand, 92, 180
diesel engines, 168
Direct Methanol Fuel Cells, 44
distributed generation, 37–38
downstream sectors, 75
Drake, Edwin, 73
Duell, Charles, 178
DuPont, 93
economic efficiency, 63–79
definition of, 65
as double-edged sword, 159n
economic, 70
economic isolation, 194
economics, 67, 78–79
local versus big picture, 69–71
of new power plants, 160–61
and pollution, 119–20
and poverty, 187, 189
resource, 70
and wealth, 190–91
(See also conservation)
INDEX

Egypt, 86, 96
Ehrlich, Anne, 81, 86, 125–26
Ehrlich, Paul, 81, 86, 125–26, 169
EIA. See Energy Information Administration (EIA)
Eisenhower, Dwight D., 107
electric cars, 51–54
electric currents, 18
electric generator, 18
electricity
California crisis and, 98–104, 133, 194
consumption and economics, 78–79
costs, 45–46
described, 19
generation, 20, 45–46
“green,” 139–41
sources, 21–45
transformer, 46
transmission, 46–48
usage, 7, 19–20
electricity industry, 78
Electric Vehicle Company, 51
electric voltages, 64
emission taxes, 139
energy
alarmism, xiii, 3, 175–77
basics, 3–14
and climate change, 143–72
definition of, 4
and environment, 117–41
forms, 6–7
for the future, 175–96
“green,” 139–41
historical patterns, 12–14
history, 10–12
kinetic, 6–7
as master resource, v, xiii, xv, 85
politics, 133
potential, 6–7
poverty, 126, 177, 187–90
sources, 7–10
supplies, 80–114
sustainability, xiv, 177, 185
timeline, 197–215
transitions, 89
United States imports, 193
United States trade, 111
units, 4–6
using, 17–61
energy crisis
Arab Oil Embargo, 96–97, 99
California, 98–104, 133, 194
gasoline prices, 104–5
natural gas, 96, 136
energy crops, 41, 42. See also biomass
energy differentials, 64
energy economics, 66–68
energy industry, 75–78
Energy Information Administration (U.S. EIA)
carbon dioxide
emissions, 168n
coal growth, 29
electricity generation costs, 45–46
energy forecast, 182
energy imports, 193
environmental future, 191–92
energy intensity, 182, 190 (See also efficiency, conservation)
energy interdependence, 193
energy pyramid, 94
energy security, 107–14
energy sustainability (See energy)
engines
diesel, 168
internal combustion, 18, 48–51, 61
steam, 11, 13–14, 17–18
England. See United Kingdom
enhanced greenhouse effect, 145
entropy, 64, 65
environment
future, 191–92
improvement in United States, 120–24, 125
trade-offs, 167–68
Environmental Protection Agency (U.S. EPA)
Clean Air Act Amendments of 1977, 132
greenhouse effect, 144
nitrous oxide from vehicles, 149
ozone level limits, 122
regulation of pollutants, 117n
vehicle emission standards, 123
envy, as threat to future, 195
Epimethus, 10
ethanol, 57–58, 129–30, 131, 134–35, 162
Ethiopia, 127
Europe, 127, 191, 193–94
European Union, 163
exothermic reactions, 10
expansionists, 92, 94
externalities, negative, 24
extreme weather events, 153
Exxon, 77, 82
ExxonMobil, 74, 76, 77

F
factories and pollution, 129
Faraday, Michael, 18
Federal Energy Regulatory Commission (FERC), 101–2, 180
feedback, and regulations, 133
feedback effect, 148, 148n222
fire, 10–11
First Law of Thermodynamics, 63, 64
fission, 9, 25–29
foot-pounds, 4
Ford, Henry, 57
Ford Motor Company, 54
forecasts. See also prediction, perils of
Chicago electrical power, 85
long-term, 185–87
mid-term global, 182, 184
mid-term United States, 182, 183
short-term, 180–81
forests, 124, 162
fossil fuels, 9, 86–95
freedom, 93, 127, 194, 196 (See also liberty)
free market, 69, 98, 119–20, 165
free trade, 107–10
Freon, 149, 149n
Freund, Friedemann, 60
Friedman, Milton, 133
fuel cells, 37–39, 43–44, 61
fuels, alternative, 55–61
Fulmer, Jacob Harry, 193
fusion, 8, 10, 45, 161
G
“gaming,” 97, 102
gasoline
boutique, 106
versus hydrogen fuel cell, 61
oxygenates in, 129–30
prices, 50–51, 104–5
shortages, 97–98
taxes, 50–51
General Agreement on Tariffs and Trade, 194
General Electric (GE), 33
generators, electric, 18
geoengineering, 166
geological isolation, 27
geothermal energy, 9, 35–36, 71, 140
Gleick, James, 220
global cooling, 144, 154, 155
global warming (See also climate change)
concern about, 144, 154
data, 150–52
distribution, 158–59
predictions, 157
solutions, 159–62, 165–67
goal-setting approach to regulations, 136–38
Goklany, Indur, 170–71
Gold, Thomas, 9
Goodrich, 93
Gorbachev, Mikhail, 195
government-owned energy firms, 77–78
government’s role, 129–30, 170–71, 194
gravity, 65
Great Britain. See United Kingdom
green energy, 139–41
greenhouse effect, 143–44, 145
greenhouse gases, 143, 144–50, 157, 170–71
“greenhouse signal,” 150, 151, 169
Greenland, 153
grids, 46, 47
groundwater, 131
“group think” bias, 156
Heritage Foundation, 128, 217–18
Hansen, James, 154, 158, 164, 192
Harrison, Douglas, 126
Hayek, F. A., 70
Hazlitt, Henry, 136
heat contents chart, 226
heat sinks, 155
Houston (Texas), 122
Hubbert, M. King, 86, 92, 94
humans
ingenuity (See ultimate resource)
role in climate change, 154–55
as source of power, 11, 12
hybrid vehicles, 54–55
hydrocarbon era, 186
hydrocarbons, 143
hydroelectric plants, 30–31
hydroelectric power, 71
hydrogen as fuel, 59–61, 161, 178
hydrogen embrittlement, 60
ice Age cycle, 154–55
ice sheet changes, 153
ideas, power of, 13, 93, 169, 196
incentives, 26–27
independent energy firms, 77
Intergovernmental Panel on Climate Change (IPCC), 151–52, 153, 155, 157, 185
internal combustion engines, 18, 48–51, 61
International Energy Agency, 44, 164, 187
interventions, resource, 17, 45, 71
interventionism, dynamics of, 96, 98, 103
I = PAT equation, 81
Iran-Iraq War, 98, 99, 224
Iris Effect, 148
iron, for fertilizing oceans, 165–66
isolated plants, 37
isolation, economic, 194
J
Jakarta, 125
Japan, 107–8, 126, 127
Jevons, William Stanley, v, 70–71, 94
Johnson, Lyndon B., 96
joules, 4
justice, 130
K
Kennecott, 82
Kerr, Richard, 155
kilocalories, 6
kilowatt-hours, 6
kilowatts, 6
kinetic energy, 6–7
Korycansky, Don, 166
Kyoto Protocol, 162–63, 171–72, 191–92
L
Lackner, Klaus, 126, 164
Lapin, Daniel, 187
Las Vegas, 102
population density, 127
surface warming, 158
inefficiency, 119. See also efficiency
inflation, 95–96, 95n143
Ingersoll, John, 57
innovation, 136
institutions, 71–75
Insull, Samuel, 38
integration, corporate, 76–77
intellectual capital, 78
International Energy Agency, 44, 164, 187
intermittancy, resource, 17, 45, 71
interventionism, dynamics of, 96, 98, 103
I = PAT equation, 81
Iran-Iraq War, 98, 99, 224
Iris Effect, 148
iron, for fertilizing oceans, 165–66
isolated plants, 37
isolation, economic, 194
J
Jakarta, 125
Japan, 107–8, 126, 127
Jevons, William Stanley, v, 70–71, 94
Johnson, Lyndon B., 96
joules, 4
justice, 130
K
Kennecott, 82
Kerr, Richard, 155
kilocalories, 6
kilowatt-hours, 6
kilowatts, 6
kinetic energy, 6–7
Korycansky, Don, 166
Kyoto Protocol, 162–63, 171–72, 191–92
L
Lackner, Klaus, 126, 164
Lapin, Daniel, 187
Las Vegas, 102
population density, 127
surface warming, 158
inefficiency, 119. See also efficiency
inflation, 95–96, 95n143
Ingersoll, John, 57
innovation, 136
institutions, 71–75
Insull, Samuel, 38
integration, corporate, 76–77
intellectual capital, 78
International Energy Agency, 44, 164, 187
intermittancy, resource, 17, 45, 71
interventionism, dynamics of, 96, 98, 103
I = PAT equation, 81
Iran-Iraq War, 98, 99, 224
Iris Effect, 148
iron, for fertilizing oceans, 165–66
isolated plants, 37
isolation, economic, 194
INDEX

Laughlin, Greg, 166–67
law of unintended
consequences, 220
liberty, 13, 128 (See also freedom)
life-cycle analysis, 166
lignite, 22. See also coal
limestone, 166
Limits to Growth, The (Club of Rome), 81
Lindsey, Brink, 179
Lindzen, Richard, 148, 154–55, 164
liquefied natural gas (LNG), 180
liquefied petroleum gas (LPG), 55–56
lobbying, 131, 132–33, 135, 136
Lomborg, Bjørn, xiii, 91–92, 175
London (England), 118, 124
Los Alamos National Laboratory, 166
Los Angeles (California), 3, 122
Low-Emission Vehicle Program, 52–54
M
machines as servants, 193–94
Malthus, Thomas Robert, 3–4, 65, 85, 165, 178
Mandatory Oil Import Program (MOIP), 107
market, 69
market pricing, 67–69
Massachusetts, 35
master resource (See energy)
means-setting approach to regulations, 131–36
measurement, units of, 225–26
Mendelsohn, Robert, 159
mercantilism, 111, 111n
methane, 148–49, 167, 168
methanol, 59
methyl tertiary-butyl ether (MTBE), 129, 130, 134–35
metric tons, 89n124
Mexico, 126, 158
Mexico City, 125
micropower, benefits of, 38
microturbines, 37–39
Middle Ages, 154–55
Middle East, xiii, 96–98, 108–109
mid-stream sectors, 75
Mills, Mark, 179
mining
oil, 90
strip, 22, 23, 167
underground, 22–23
Mises, Ludwig von, 179
Mobil, 77, 82
molten carbonate fuel cells, 44
Montgomery Ward, 82
Moore, Stephen, 124, 127–28
motor vehicles. See automobiles
MTBE (methyl tertiary-butyl ether), 129, 130, 134–35
Mukowski, Frank H., 104–5
Mystery of Capital, The (de Soto), 72
N
Nairobi, 125
naphtha, 120
NASA, 44, 166–67
National Academy of Sciences, 170
natural gas
cost, 126, 180, 181
efficiency, 119, 160
formation, 9
as “green energy,” 141
probable resources, 87
proved reserves, 88
supplies, 87, 180–81
natural gas industry, 78
natural gas plants, 29–30
natural gas vehicles (NGVs), 56
natural greenhouse effect, 144
natural monopoly, 47
negative feedback effect, 148n222
Netherlands, 96–97, 127
Nebraska, 27–28
New Mexico, 56, 160–61
Newton, Isaac, 14
newton-meters, 4
newtons, 4, 4n4
New York City, 112–13
New York Mercantile Exchange (NYMEX), 181
NIMBY (Not In My Backyard) syndrome, 27–28, 194
nitrogen oxides, 23, 123, 130
nitrous oxide, 143, 149
Nixon, Richard M., 96, 97
North, Gerald, 156
North American Electric Reliability Council (NERC), 47
nuclear fission, 9, 25–29, 161
nuclear fusion, 8, 10, 45, 161
Nuclear Regulatory Commission (NRC), 29
numeric prefixes chart, 226
O
oceans, and climate change, 155
ocean temperature changes, 153
Office of Energy Policy, 96
offshore drilling, 134
oil
as fertilizer, 117
formation, 9
imports versus U.S. domestic production, 107, 108
“old” v. “new,” 97
output, 99
as pollutant, 118
prices, 99
probable resources, 87
proved reserves, 88
reserves, 110
spills, 124–45
supplies, 87, 91
oil-fired plants, 32–33
oil industry, 75–78
oil majors, 76
oil mining, 90
oil production
global, 223–24
OPEC versus non-OPEC, 109
property rights issues, 73–74
oil seeps, 117
oil shale, 90, 91
oil spills, 124, 125, 134
OPEC (See Organization of Petroleum Exporting Countries)
open trade, 107–10
opportunity costs, 137
opportunity crops, 41, 42. See also biomass
Optional Binding Mandatory
Curtailment Program, 102
organic farming, 167
Organization of Petroleum
Exporting Countries (OPEC),
104, 107, 108–9, 111
Ortega y Gasset, José, 101
overburden, 22, 167
overpopulation, 127
oversupply, 95n142
ownership rights, 71–74, 129,
130, 189
oxygen, 117
oxygenates, 129–30, 134–35
ozone, 150
Pacific Ocean, 117, 153
partial zero emission vehicles
(PZEVs), 53
particulates, from burning coal, 24
peat, 9
Pennsylvania Supreme Court, 73n95
people, as ultimate resource, 85, 86
Peru, 75
pessimism, 175–78, 196
Petróleos de Venezuela, S.A., 77
Petróleos Mexicanos (PEMEX), 77
petroleum. See oil
phosphoric acid fuel cells, 44
photosynthesis, 8
photovoltaics, 39–40
physics, 4
Pittsburgh, 122
plankton growth, 165–66
plant life, and climate change,
155–56
Poland, 124
pollution, 117–19
pollution allowances, 138–39
population control, and global
warming, 164–65
population growth, expected, xiii
positive feedback effect, 148,
148n222
potential energy, 6–7
poverty, 126–27, 163, 168, 187–89,
190. See also wealth
power, definition of, 4
Powerplant and Industrial Fuel Use
Act of 1978, 136, 170n270
precautionary principle, 169–70
prediction, perils of, 81–84,
178–79. See also forecasts
Price-Anderson Act of 1957, 29
price controls, 95–96, 95n142,
97, 98
“price gouging,” 104
price spikes (surges), 95–98,
100–104, 180–81
price system, 68–70, 91, 186
privatization, 189
probable reserves, 87
productivity, 127–28, 165
profits, 68, 68n
Prometheus, 10
property rights, subsurface, 71–74,
129, 130, 189
proton exchange membrane
(PEM) fuel cells, 44
proved reserves, 87, 88, 89
Public Choice Theory, 134
public-utility regulation, 48
pyroprocessing, 28
quads, 6
quicklime, 166
quotas, 107
radioactive material, 118
railroad, transcontinental, 70
rainfall increases, 153
Raymond, Lee, 74
Reagan, Ronald, 136
recycling costs, 69
refineries, 105, 107
reformulated gasoline, 106
regenerative braking, 55
regulation
dynamics of, 96, 98, 103
of energy industry, 78
goal-setting approach, 136–38
means-setting approach,
131–36
necessity for, 130–31
problems with, 95–107, 131–38
regulatory covenant, 47n
Reliant Electric, 82
renewable energy era, 186
Respsol, 77–78
research and development (R&D),
29, 94–95, 192–93
reserves
known recoverable, 82–83
probable, 87
proved, 87, 88, 89
reserve years, 82
reservoirs, 64
resource efficiency, 70
resources
bell curve, 94
conserving, 69–70
exhaustion, 84
future, 192
historical shifts in, 93
intermittent, 17
versus pollutants, 118
and poverty, 126
pyramid, 94
versus service they provide, 84
reverse Dutch auction, 99n147
“revolving door,” 136
Rio Declaration, 170
Rio de Janeiro Earth
Summit, 129
Rockefeller, John D., 77, 120
Rockefeller, William, 120
Romania, 163
rotary motion, 17–18
Royal Dutch Shell, 76
rule of capture, 73, 73n95, 131
Russia
Chernobyl nuclear plant
accident, 27
environmental picture, 125–26
envy in, 195
Kyoto Protocol and, 162
monitoring station closure,
150, 153n235
productivity, 127–28
Sagan, Carl, 8
São Paulo, 125
Saudi Arabia, 104
SCADA (supervisory control and data acquisition) systems, 46
Schlesinger, James, 82
Schumpeter, Joseph, 78
Scientific American, xiii
scrubbers, 132–33
sea level changes, 153, 158
Second Law of Thermodynamics, 63–64
sectors, industry, 75–76
selective catalytic reduction (SCR), 42
self-interest, 134, 160
Senate Energy and Natural Resources Committee, 104–5
sewage, 118
Shaw, George Bernard, 11
Shell Oil, 77
short tons, 89n124
Siberia surface warming, 158
Sierra Club, 139
Simmonds, Peter, 119–20
Simon, Julian, v, 12, 85, 92, 94, 124, 127–28, 172, 175, 187
Skeptical Environmentalist, The (Lomborg), xiii, 175
Skousen, Mark, 13, 67
slavery, 12, 13
Smith, Adam, 72, 196
smog, 122, 125, 130
smoke, 118
socialism, 77–78, 165
SOHIO, 82
solar cells, 39–40
solar power, 8–9, 39–40, 139
solid oxide fuel cells, 44
soot, 168
Soto, Hernando de, 72, 75
South America, 126
South Korea, 127
Soviet Union. See Russia
Spain, 140
special interests, 131
Standard Oil, 77, 93
statism, 177
steam engines, 11, 13–14, 17–18
steam turbines diagram, 21
Steer, Andrew, 124, 129
Stone Age, 91–92, 118–19
Strategic Petroleum Reserve (SPR), 110
strip mining, 22, 23, 167
subbituminous coal, 21–22. See also coal
subsidence, 22–23
subsidies, 29, 107, 171
subsurface mineral rights, Argentina, 189
sulfur dioxide, 23, 132–33
Summary for Policymakers, 152, 152n
super-ultra-low-emission vehicles (SULEVs), 53
surplus, 95n142
suspended particles, impact on climate change, 156
sustainable development, 129
Switzerland, 126
Syria, 96
Taiwan, 126, 127
Tarifa (Spain) wind farm, 35, 140
tankers, oil, 134, 140
tariffs, 107
taxes
 carbon, 164
 emission, 139
 gasoline, 50–51
technology, future of, 193–94
telecommuting, 162
temperature measurements, global, 150–52
Texaco, 77
Thames River, 124
thermodynamics, 63–64, 63n
Think! electric cars, 53, 54
Third World
 assistance to, 168
 biomass, 187–89
 carbon dioxide emissions, 191
 economic growth and climate change
c ontrols, 171
 environmental picture, 125, 126–29
 population growth, 165
 threats to future, 194–96
Three Mile Island nuclear plant accident, 27
tidal power, 9, 43
timelines
 energy, 197–215
 resource shifts, 93
Tits, 10
tons, 89n124
trade balance, 110–12
trade-offs, 167–68
“tragedy of the commons,” 130–31, 187, 189
transformers, 46
transportation, 48–61. See also specific modes of transportation
trees, and carbon dioxide emissions, 162
troposphere, 150, 150n228, 151
Tullock, Gordon, 134
“tyranny of the status quo.” 134–35
ultimate resource, xv, 85, 187, 196
underground mining, 22–23, 90
unintended consequences, law of, 220
United Kingdom
 coal gas, 120
 coal industry, 70–71
 energy security, 107–8
 population density, 127
 wood fuel, 86, 93
United Nations, 152, 170
United States
 air emissions, 120–21
 carbon dioxide emissions, 191–92
 energy consumption, 1775–2000, 186
 energy imports, 193
 energy trade, 111
 environmental improvement, 120–24, 125
 Kyoto Protocol, 162, 163
 machines as servants, 193–94
 mid-term forecast, 182, 183
motor vehicle emission reductions, 123
oil imports versus domestic production, 107, 108
oil production, 223–24
oil spills, 124, 125
productivity, 127–28
refineries, 105, 107
units of measurement, 225–26
upstream sectors, 75
urban heat island effect, 150

V
Venezuela, 90, 104
vertical integration, 76–77
Vietnam War, 96
virtual servants, 193–94
volatile organic compounds (VOC), 123

W
Wallström, Margaret, 163
War on Poverty, 96
waste, 119–20
water cycle, 153
water electrolysis, 60
waterflooding, 89
water quality, 124, 137
water vapor, 146, 148, 156
waterwheels, 17
watts, 4
wealth, 126–28, 190–91. See also poverty
wetlands, as source of methane, 148, 167
White, David, 81
wilderness areas, 162
wind farms, 33–34, 140
windmills, 17
wind power, 33–35, 71, 139–40
wind power, controversies, 34–35
wind turbines, 33, 34, 35, 139–40
Wingspread Declaration, 170
Wolk, Daniel, 85
wood
cost, 126
as fuel, 40, 41, 42, 71
inefficiency and waste, 119
supplies, 86, 93
work, definition of, 4, 17
work-time pricing, 82, 83
World Energy Council, 185
World Meteorological Organization (WMO), 152
World War I, 95–96
World War II, 93, 95–96
Wright Brothers, 14, 179n279

Y
Yamani, Sheik, 91–92
Yeatts, Guillermo, 189
Yergin, Daniel, 95
Yom Kippur War, 96–97
Yucca Mountain, 27–28

Z
zero emissions vehicles (ZEVs), 51–54
zero-sum game, 127, 127n
Zeus, 10
Zimmermann, Erich, 85, 94
Ziock, Han-Joachim, 126